说一个笑话吧,一个关于数学的笑话。
如果想要用“暴力破解”的办法证明哥德巴赫猜想,那应该怎么做呢?
很简单,首先我们推测哥德巴赫猜想的完美证明“最少”需要多少个数学符号,然后我们验证这个上限以内的全部数学符号的排列组合,那么哥德巴赫猜想的证明便得以完成。
就这么简单,就这么轻松,陈景润先生的悲愿就直接达成了。
是不是很轻松很写意很愉快?
实际上呢,数学家甚至已经设计出了一种特殊的图灵机——海狸机。这种图灵机就可以用这种“暴力拆封”的办法,破解掉几乎所有数学问题。
而王崎让驴子背着的,就是一种“海狸机”。也就是所谓的“四色四态海狸机”。
如果将这种暴力穷尽的方法利用在哥德巴赫猜想的例子之上的情形时,比如说,我们可以简单地设计一个程序,它对每一个大于四的偶数都测试它是不是两个素数之和,如果它找到一个反例就输出,如果找不到,它就永远也不会停止。就这样,我们将哥德巴赫猜想转化为了某种低级的停机问题。现在我们将这个程序用两色海狸机来运行,如果这段程序使用了两色海狸机的五十种状态来编写,那么海狸机在运行了五十态的“海狸移动数”之后仍然不停止的话,那么我们就可以肯定,这个程序他永远都不会停止了——因为他已经将如果可以停止下来的话的全部的“符号的排列组合”都用光了。就这样,困扰陈景云多年的难题就会被五十态海狸机给轻易的强行碾碎。
虽然可以在海狸机内部构造各种指令让印刷头的移动步数变多,但是总的来说,只要镶嵌机可以停下来,那么纸带和海狸机的印刷部件、主部件联合的排列组合所能达到的,纸带上的文字种类总和是有限的。类似于段子里面的对所有数学符号的排列组合的暴力搜索,海狸机便是这样一个对图灵机,乃至于集合论本身的“表现真理的能力”暴力搜索的机器。
但是,为什么没有人用这种方式研究数学呢?
成本问题。
首先,这里必须解释一下,海狸机为什么叫“海狸机”。在西方国家,“海狸”这种小动物被视作“忙碌”和“勤劳”的象征。而“忙碌海狸”,则是“忙到死”的意思。
海狸机与其延伸的“忙碌海狸问题”,就带着这样黑色的隐喻——即使忙到死,也绝对不可能完成事情。
以“海狸机所能镶嵌完成的,纸带上面的有文字的块最大时的数量”的“海狸文字数”,以及“印刷头印刷的次数”的“海狸移动数”,就是王崎方才所问题目的终极答案。
如果是二态的海狸机,那么10的连续取幂于自己10次的态的海狸机所能镶嵌完成的,皮带上面的有颜色的块最大时的数量,这便是歌庭派的策梅洛—弗兰克尔集合论所能达到的证明力的极限。
10的连续取幂于自己10次,这已经是凡人所不能达到的数,如果某个基于策梅洛—弗兰克尔集合论的证明的复杂度,或者说,证明的长度,已经达到了这个常数的地步,那么它就会处于不可证的状态,因为它相当于将集合论所能用的全部的“符号的排列组合”都用光了。
当海狸机具有三态的时候,人类的数学便已经不能揣度最后的常数了——那个数已经大道无法表达。
二色六态的海狸机,其海狸文字数和海狸移动数已经是物理上的不可求解了——如果以人类现有的电子计算机的效率来计算,即使将地球所在的无灵气宇宙整个宇宙都化为能源,也没办法得出二色六态海狸机的海狸文字数与海狸移动数。
四色四态海狸机,同样属于“物理上的无法证明”。
“心想事成”老哥疑似具有许愿机的属性,那么,这个问题就是检测它本质的时候了。
而如果它仅仅是一个具备一点力量的AI,那么它就会开始计算,然后在转瞬之间被卡死。
当然,如果它是强人工智能,能够在卡死的瞬间觉察到这个问题的威能,它就会回答无法证明。
而如果它是直连“真理”本身的神谕机,那么,它或许会在人类数学的基础上重新定义符号系统,然后给出一个王崎需要学习数年、数十年才能理解的定义。
当然,还有一种极端微小的可能,虽然渺小,但是也不能说不存在——心想老哥是一个威能巨大的伪许愿机。如果是这样,那么在这个瞬间,这个宇宙的灵力都会被剧烈的消耗。
不过,如果能够窥得这个问题的终极答案,那么……
“死也值啦!心想老哥!”王崎盯着空处,大声呐喊:“来啊!感受得到吧!我有多害怕你能够告诉我答案!”
“你告诉我这个答案,就证明你真的不可战胜!那对我来说就是最深的绝望!”
“那么,老哥,说吧!来啊!”
这一瞬间,墙壁里弹出的锥子的声音,奔跑带起的强音,隧道破裂的声音,似乎都在渐渐远离。